Homological algebra exercise sheet Week 4

1. Prove the following lemma stated during the lecture.

Lemma 0.1 (Snake lemma). Consider a commutative diagram of Rmodules of the form

$$A' \longrightarrow B' \stackrel{p}{\longrightarrow} C' \longrightarrow 0$$

$$f \downarrow \qquad g \downarrow \qquad h \downarrow$$

$$0 \longrightarrow A \stackrel{i}{\longrightarrow} B \longrightarrow C.$$

If the rows are exact, there is an exact sequence

$$\ker(f) \to \ker(g) \to \ker(h) \xrightarrow{\partial} \operatorname{coker}(f) \to \operatorname{coker}(g) \to \operatorname{coker}(h)$$

with ∂ defined by the formula

$$\partial(c') = i^{-1}gp^{-1}(c'), \quad c' \in \ker(h).$$

Moreover, if $A' \to B'$ is monic, then so is $\ker(f) \to \ker(g)$, and if $B \to C$ is onto, then so is $\operatorname{coker}(g) \to \operatorname{coker}(h)$.

- 2. Let \mathcal{A} be an abelian category.
 - (a) Let

$$0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$$

be a short exact sequence in Ch(A). Show that if two of the three complexes are exact, then so is the third.

- (b) Let $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ be a morphism in $\mathbf{Ch}(\mathcal{A})$. Show that if $\ker(f_{\bullet})$ and $\operatorname{coker}(f_{\bullet})$ are acyclic, then f_{\bullet} is a quasi-isomomorphism. Is the converse true?
- 3. Consider the following chain complex of abelian groups

$$\cdots \to \mathbb{Z}/4\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}/4\mathbb{Z} \to \cdots.$$

Show that it is acyclic, but not split exact.

4. Let \mathcal{A} be an abelian category and consider a morphism $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ in $\mathbf{Ch}(\mathcal{A})$.

Show that f_{\bullet} is null homotopic if and only if it extends to a map (-s,f): cone $(C_{\bullet}) \to D_{\bullet}$.